Future Aviation Safety Concerns

Christopher A. Hart Chairman, NTSB

Outline

- NTSB Basics

Some Future AirlineSafety Concerns

NTSB 101

- Independent federal agency, investigate transportation mishaps, all modes
- Determine probable cause(s) and make recommendations to prevent recurrences
- Primary product: Safety recommendations
 - Favorable response > 80%
- SINGLE FOCUS IS SAFETY
- Independence
 - Political: Findings and recommendations based upon evidence rather than politics
 - Functional: No "dog in the fight"

Three Future Safety Concerns

- Quantity and quality of pilots
- Overzealous criminalization of accidents
- Increasing automation

Pilots: Quantity

Problem

- Colgan accident in Buffalo (2009) generated
 1500-hour requirement
- But both pilots in Colgan >1500 hours
- New requirement improving safety?

Solution

Metric should be based upon quality, not quantity

Pilots: Quality

Problem

- Loss of military pilot pipeline
- Military: "Right Stuff" or out

Current Civilian System

- Written test: Knowledge
- Flying test: Skills and knowledge
- Not tested: Judgment or professionalism
- No limit on how many times to take tests

Abundant Professionalism

- Hudson River landing (2009)
- Gliding to the Azores (2001)
- Sioux City (1989)
- Gimli Glider (1983)

Lack of Professionalism

- Let's try FL 410 (2004)
- Takeoff without runway lights (2006)
- Minneapolis over-flight (2009)
- Stick shaker: PULL! (2009)

The Training Challenge

- Initial training must:
 - Develop knowledge and skills
 - Be evaluated by more than just (eventually) passing knowledge and skill tests
 - Also develop and instill good judgment and professionalism
- Recurrent training must:
 - Continue to develop and strengthen all of the above

Need to Shift the Bell Curve

Overzealous Criminalization

- Systems are getting more complex
- Most accidents involve good people trying to do the right thing under sometimes difficult circumstances
- Human error: Immediate response is to PUNISH!
- Issue: Best way to stop error that is inadvertent?

Undesirable Results

Possibility of criminalization:

- Chills willingness of front-line employees to participate in proactive information programs
- Hinders mishap investigations
- Reduces likelihood of investigating or addressing system issues

Recent Examples

Concorde, Paris, France (2000)

– GOL 1907, Brazil (2006)

Concorde

Chain of Events

- Takeoff
- Piece of metal on runway from previous airplane
- Main gear tire shredded after hitting piece of metal
- Fragments from tire hit wing, punctured fuel tank
- Leaking fuel caught fire

GOL 1907

Chain of Events

- Aircraft eastbound, FL 370, per international convention
- Assigned route turned westbound at navigation waypoint
- Go to even thousand (FL 380 or 360)?
- Pilots tried unsuccessfully to contact controllers, so remained at FL 370

- Airplane invisible to ATC
- Airplane also invisible to TCAS in other airplanes
- Both airplanes navigating with GPS

Theory

Pilot's foot on footrest hit transponder "Standby" button

Increasing Automation

- When it malfunctions:
 - Increasing complexity increases likelihood that operators will not completely understand the system
 - Increasing reliability increases likelihood that operators have never seen a given malfunction before, even in training
- When it's working properly:
 - Complacency, degradation of skills
 - Adverse impact on professionalism?

Examples

- Amsterdam, Holland (2009)
 - Rio to Paris (2009)
 - San Francisco (2013)

Amsterdam, Holland

The Conditions

- Malfunctioning left radar altimeter
- Pilots selected right side autopilot
- Aircraft vectored above glideslope
- Autothrust commanded throttles to idle

- Unknown to pilots, right autopilot using left radar altimeter
- Pilot unsuccessfully attempted go-around

– Queries:

- Should autopilot default to same side altimeter?
- More clarity re source of information? Ability to select?

Rio to Paris

The Conditions

- Cruise, autopilot engaged
- Night, in clouds, turbulence, coffin corner
- Ice blocked pitot tubes
- Autopilot and autothrust inoperative without airspeed
- Alpha protections also inoperative
- Pilots' responses inappropriate

– Queries:

- Pilot training re loss of airspeed information in cruise?
- Importance of CRM pilot knowing other pilot's actions?
- Pilot training re manual flight at cruise altitude?

San Francisco

- Clear day, negligible wind, runway > 11,000'
- Electronic glideslope inoperative,
 but visual glideslope available
- Pilot rarely did manual approach
- Pilot unaware that autothrottle on standby, not controlling selected speed
- Poor control of speed (34 knots under Vref) and altitude
- Crashed into seawall

Undercutting Professionalism?

- Many U.S. subway systems: Automation
 - Starts the train out of the station
 - Observes speed limits, avoids collisions
 - Stops the train in the next station
 - Opens the doors
- Operator
 - Closes the doors
- Issues
 - Work for pay, rather than for job well done?
 - Job satisfaction/professionalism?

Conclusion

In order to continue improving safety, the industry must address issues of professionalism, overzealous criminalization, and increasing automation

Thank You

Questions?

